Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
2.
Gac. méd. Méx ; 155(5): 504-510, Sep.-Oct. 2019. graf
Article in English | LILACS | ID: biblio-1286551

ABSTRACT

Cancer is a multifactorial disease that constitutes a serious public health problem worldwide. Prostate cancer advanced stages are associated with the development of androgen-independent tumors and an apoptosis-resistant phenotype that progresses to metastasis. By studying androgen-independent lymphoid nodule carcinoma of the prostate (LNCaP) cells induced to apoptosis by serum elimination, we identified the activation of a non-selective cationic channel of 23pS conductance that promotes incoming Ca2+ currents, as well as apoptosis final stages. arp2cDNA was isolated and identified to be of the same cell type, and mRNA was expressed in Xenopus laevis oocytes, which was found to be associated with the activation of incoming Ca2+ currents and induction to apoptosis. cDNA, which encodes the ARP2 protein, was overexpressed in LNCaP cells and Chinese hamster ovary cells, which induced apoptosis. Our evidence suggests that protein ARP2 overexpression and transit to the cell membrane allows an increased Ca2+ incoming current that initiates the apoptosis process in epithelial-type cells whose phenotype shows resistance to programmed cell death.


Subject(s)
Humans , Animals , Male , Prostatic Neoplasms/pathology , Calcium/metabolism , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Ovum/metabolism , Prostatic Neoplasms/metabolism , Xenopus laevis , RNA, Messenger/metabolism , Calcium Channels/metabolism , Cricetulus , CHO Cells , DNA, Complementary/isolation & purification , Apoptosis Regulatory Proteins/isolation & purification
3.
Braz. j. med. biol. res ; 50(9): e5765, 2017. tab, graf
Article in English | LILACS | ID: biblio-888990

ABSTRACT

Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10-9-10-5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-dependent vasorelaxant effect at the higher concentrations (10-7.5-10-5 M). The present outcome was not modified by 10-6 M atropine (an antagonist of muscarinic acetylcholine receptors), 3.1×10-7 M glibenclamide (an ATP-sensitive K+ channel blocker), 10-3 M 4-aminopyridine (4-AP; a voltage-activated K+ channel blocker), 10-5 M indomethacin (a prostaglandin synthesis inhibitor), 10-5 M clotrimazole (a cytochrome P450 inhibitor) or 10-5 M cycloheximide (a general protein synthesis inhibitor). Contrarily, the clobenzorex-induced vasorelaxation was significantly attenuated (P<0.05) by 10-5 M L-NAME (a direct inhibitor of nitric oxide synthase), 10-7 M ODQ (an inhibitor of nitric oxide-sensitive guanylyl cyclase), 10-6 M KT 5823 (an inhibitor of protein kinase G), 10-2 M TEA (a Ca2+-activated K+ channel blocker and non-specific voltage-activated K+ channel blocker) and 10-7 M apamin plus 10-7 M charybdotoxin (blockers of small- and large-conductance Ca2+-activated K+ channels, respectively), and was blocked by 8×10-2 M potassium (a high concentration) and removal of the vascular endothelium. These results suggest that the direct vasorelaxant effect by clobenzorex on phenylephrine-precontracted rat aortic rings involved stimulation of the NO/cGMP/PKG/Ca2+-activated K+ channel pathway.


Subject(s)
Animals , Male , Rats , Amphetamines/pharmacology , Aorta, Thoracic/drug effects , Endothelium, Vascular/drug effects , Vasodilation , Vasodilator Agents/pharmacology , Calcium Channels/drug effects , Calcium Channels/metabolism , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/metabolism , Potassium Channels, Voltage-Gated/drug effects , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels/drug effects , Potassium Channels/metabolism , Rats, Wistar
4.
Braz. j. med. biol. res ; 50(6): e6141, 2017. graf
Article in English | LILACS | ID: biblio-839302

ABSTRACT

Cannabinoid type 1 receptor (CB1R) inhibition tends to be one of the promising strategies for the treatment of obesity and other related metabolic disorders. Although CB1R inhibition may cause adverse psychiatric effects including depression and anxiety, the investigation of the role of peripheral CB1R on weight loss and related metabolic parameters are urgently needed. We first explored the effect of rimonabant, a selective CB1R antagonist/inverse agonist, on some metabolic parameters in high fat-diet (HFD)-induced obesity in mice. Then, real-time PCR and electrophysiology were used to explore the contribution of high voltage-activated Ca2+ channels (HVACCs), especially Cav1.1, on rimonabant's effect in skeletal muscle (SM) in HFD-induced obesity. Five-week HFD feeding caused body weight gain, and decreased glucose/insulin tolerance in mice compared to those in the regular diet group (P<0.05), which was restored by rimonabant treatment compared to the HFD group (P<0.05). Interestingly, HVACCs and Cav1.1 were decreased in soleus muscle cells in the HFD group compared to the control group. Daily treatment with rimonabant for 5 weeks was shown to counter such decrease (P<0.05). Collectively, our findings provided a novel understanding for peripheral CB1R's role in the modulation of body weight and glucose homeostasis and highlight peripheral CB1R as well as Cav1.1 in the SM as potential targets for obesity treatment.


Subject(s)
Animals , Male , Blood Glucose/drug effects , Calcium Channels/drug effects , Cannabinoid Receptor Antagonists/pharmacology , Muscle, Skeletal/drug effects , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Body Weight/drug effects , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/metabolism , Calcium Channels/metabolism , Diet, High-Fat/adverse effects , Glucose Intolerance/etiology , Insulin Resistance , Mice, Inbred C57BL , Models, Animal , Muscle, Skeletal/metabolism , Obesity/etiology , Receptor, Cannabinoid, CB1/physiology
5.
Braz. j. med. biol. res ; 48(6): 537-544, 06/2015. graf
Article in English | LILACS | ID: lil-748218

ABSTRACT

Amfepramone (diethylpropion) is an appetite-suppressant drug used for the treatment of overweight and obesity. It has been suggested that the systemic and central activity of amfepramone produces cardiovascular effects such as transient ischemic attacks and primary pulmonary hypertension. However, it is not known whether amfepramone produces immediate vascular effects when applied in vitro to rat aortic rings and, if so, what mechanisms may be involved. We analyzed the effect of amfepramone on phenylephrine-precontracted rat aortic rings with or without endothelium and the influence of inhibitors or blockers on this effect. Amfepramone produced a concentration-dependent vasorelaxation in phenylephrine-precontracted rat aortic rings that was not affected by the vehicle, atropine, 4-AP, glibenclamide, indomethacin, clotrimazole, or cycloheximide. The vasorelaxant effect of amfepramone was significantly attenuated by NG-nitro-L-arginine methyl ester (L-NAME) and tetraethylammonium (TEA), and was blocked by removal of the vascular endothelium. These results suggest that amfepramone had a direct vasorelaxant effect on phenylephrine-precontracted rat aortic rings, and that inhibition of endothelial nitric oxide synthase and the opening of Ca2+-activated K+ channels were involved in this effect.


Subject(s)
Animals , Male , Acetylcholine/pharmacology , Aorta, Thoracic/drug effects , Appetite Depressants/pharmacology , Diethylpropion/pharmacology , Vasodilator Agents/pharmacology , Aorta, Thoracic/metabolism , Calcium Channels/drug effects , Calcium Channels/metabolism , Endothelium, Vascular/drug effects , NG-Nitroarginine Methyl Ester/metabolism , Nitric Oxide Synthase Type III/drug effects , Phenylephrine/pharmacology , Potassium Channels/drug effects , Potassium Channels/metabolism , Rats, Wistar , Tetraethylammonium/metabolism , Vasoconstrictor Agents/pharmacology , Vasodilation/drug effects
6.
Rev. latinoam. enferm ; 23(2): 250-258, Feb-Apr/2015. tab
Article in English | LILACS, BDENF | ID: lil-747167

ABSTRACT

OBJECTIVE: to verify associations between overweight and the characteristics of young adult students to support nursing care. METHOD: case-control study conducted with young adults from public schools. The sample was composed of 441 participants (147 cases and 294 controls, with and without excess weight, respectively). Sociodemographic and clinical characteristics were collected together with exposure factors and anthropometrics. Multiple logistic regression was used. The study received Institutional Review Board approval. RESULTS: statistically significant association with overweight: non-Caucasian, having a partner; weight gain during adolescence, mother's excess weight, the use of obesogenic medication, augmented diastolic blood pressure, of abdominal circumference and waist/hip ratio. In addition to these, schooling and weight gain during childhood were also included in the multivariate analysis. After adjustment, the final model included: having a partner, weight gain during adolescence, augmented diastolic blood pressure and abdominal circumference. CONCLUSION: the analysis of predictor variables for excess weight among young adult students supports nurses in planning and developing educational practices aimed to prevent this clinical condition, which is a risk factor for other chronic comorbidities, such as cardiovascular diseases. .


OBJETIVO: verificar a associação entre excesso de peso e características de adultos jovens escolares, como subsídio ao cuidado de enfermagem. MÉTODO: estudo caso-controle, realizado com adultos jovens de escolas públicas. Amostra composta por 441 participantes (147 casos e 294 controles, com e sem excesso de peso, respectivamente). Coletaram-se informações sociodemográficas, clínicas, fatores de exposição e antropometria. Utilizou-se regressão logística múltipla. O estudo foi aprovado em comitê de ética. RESULTADOS: detectou-se associação estatística significativa com excesso de peso em: não brancos, ter companheiro(a), ganho ponderal na adolescência, excesso de peso materno, uso de fármacos obesogênicos, pressão arterial diastólica aumentada, circunferência abdominal e relação cintura quadril. Além destas, entraram na análise multivariada as variáveis escolaridade e ganho ponderal na infância. Após etapa de ajuste permaneceram no modelo final: estado civil com companheiro(a), ganho ponderal na adolescência, pressão arterial diastólica aumentada e circunferência abdominal aumentada. CONCLUSÃO: a análise das variáveis preditoras para o excesso de peso em adultos jovens escolares possibilita ao enfermeiro bases para elaboração e planejamento de práticas educativas que visem à prevenção desta condição clínica, visualizada como fator de risco para outras comorbidades de caráter crônico, como as doenças cardiovasculares. .


OBJETIVO: verificar la asociación entre exceso de peso y características de adultos jóvenes escolares como contribución para el cuidado de enfermería. MÉTODO: estudio de caso control realizado con adultos jóvenes de escuelas públicas. Muestra compuesta por 441 participantes (147 casos y 294 controles, con y sin exceso de peso, respectivamente). Se recolectaron características sociodemográficas, clínicas, factores de exposición y antropometría. Se utilizó la regresión logística múltiple. El estudio fue aprobado por comité de ética. RESULTADOS: se detectó asociación estadística significativa con exceso de peso: no blancos, tener compañero, aumento de peso en la adolescencia, exceso de peso materno, uso de medicamentos obesogénicos, presión arterial diastólica aumentada, circunferencia abdominal aumentada y relación cintura-cadera. Además de estas, entraron en el análisis multivariado las variables escolaridad y aumento de peso en la infancia. Después de la etapa de ajuste permanecieron en el modelo final: estado civil con compañero, aumento de peso en la adolescencia, presión arterial diastólica aumentada y circunferencia abdominal aumentada. CONCLUSIÓN: el análisis de las variables de predicción para el exceso de peso en adultos jóvenes escolares suministra al enfermero bases para la elaboración y planificación de prácticas educativas que objetiven la prevención de esta condición clínica, visualizada como factor de riesgo para otras enfermedades concomitantes de carácter crónico, como las enfermedades cardiovasculares. .


Subject(s)
Humans , Animals , Mice , Rats , Calcium Channels/genetics , Spinocerebellar Ataxias/genetics , Transcription Factors/genetics , Cell Death , Cell Line, Tumor , Calcium Channels/metabolism , Cerebellum/embryology , Cerebellum/physiopathology , Gene Expression Regulation , Neurites/metabolism , Peptides/genetics , Purkinje Cells/metabolism , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/physiopathology , Transcription, Genetic , Transcription Factors/metabolism
7.
Ciênc. Saúde Colet. (Impr.) ; 20(3): 841-850, marc. 2015. tab, graf
Article in English | LILACS | ID: lil-742239

ABSTRACT

This study sought to confirm the structure and to investigate the psychometric properties of an experimental Portuguese version of the York Cardiac Beliefs Questionnaire (YCBQ) in a general population sample. It also set out to identify the prevalent misconceptions in the community and to assess the differences according to socio-demographic characteristics. It involved a cross-sectional survey in which both test and validation samples were collected (n = 476), including participants aged between 18 and 40, recruited via e-mail and social networks. The Confirmatory Factor Analysis on both samples suggested a shorter, three factor version of the YCBQ. Also, misconceptions differed significantly according to sociodemographic variables. The validation of the YCBQ for samples in the community constitutes an important starting point to promote research on misconceptions held in the community by specific groups, as well as to provide key points for health promotion.


Este estudo teve como objetivo confirmar a estrutura e investigar as propriedades psicométricas de uma versão experimental portuguesa do York Cardiac Beliefs Questionnaire numa amostra da população geral; identificar as crenças erróneas mais fortes na comunidade; e avaliar as diferenças de acordo com características sociodemográficas. Trata-se de um estudo transversal com uma amostra de teste e outra de validação, incluindo um total de 476 participantes, com idade entre 18 e 40 anos, recrutados via e-mail e nas redes sociais. A Análise Fatorial Confirmatória em ambas as amostras indicou uma versão reduzida do YCBQ de três factores. As crenças erróneas diferiram significativamente de acordo com as variáveis sociodemográficas. A validação do YCBQ para amostras da comunidade constitui um importante ponto de partida para promover a investigação sobre crenças erróneas em grupos específicos da comunidade, assim como fornecer indicadores relevantes para a promoção da saúde.


Subject(s)
Humans , Calcium/metabolism , Inflammation/metabolism , /metabolism , Membrane Proteins/metabolism , Muscle, Smooth/metabolism , Neoplasm Proteins/metabolism , Respiratory System/embryology , Tumor Necrosis Factor-alpha/metabolism , Binding Sites , Calcium Channels/metabolism , Cell Membrane/metabolism , Cells, Cultured , Myocytes, Smooth Muscle/metabolism , Sarcoplasmic Reticulum/metabolism
8.
Medicina (B.Aires) ; 73(2): 155-162, abr. 2013. ilus
Article in English | LILACS | ID: lil-694758

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD), a most common genetic cause of chronic renal failure, is characterized by the progressive development and enlargement of cysts in kidneys and other organs. The cystogenic process is highly complex and involves a high proliferative rate, increased apoptosis, altered protein sorting, changed secretory characteristics, and disorganization of the extracellular matrix. ADPKD is caused by mutations in the genes encoding polycystin-1 (PC-1) or polycystin-2 (PC-2). PC-1 undergoes multiple cleavages that intervene in several signaling pathways involved in cellular proliferation and differentiation mechanisms. One of these cleavages releases the cytoplasmic C-terminal tail of PC-1. In addition, the C-terminal cytoplasmic tails of PC-1 and PC-2 interact in vitro and in vivo. The purpose of this review is to summarize recent literature that suggests that PC-1 and PC-2 may function through a common signaling pathway necessary for normal tubulogenesis. We hope that a better understanding of PC-1 and PC-2 protein function will lead to progress in diagnosis and treatment for ADPKD.


La poliquistosis renal autosómica dominante (ADPKD por sus siglas en inglés) es una causa genética muy común de falla renal crónica que se caracteriza por el progresivo desarrollo y agrandamiento de quistes en los riñones y en otros órganos. El proceso de cistogénesis comprende incrementos en la proliferación y muerte celular por apoptosis, así como alteraciones en la distribución intracelular de proteínas, el movimiento transcelular de solutos y organización de la matriz extracelular. ADPKD es causada por mutaciones en los genes que codifican para policistina-1 (PC-1) o policistina-2 (PC-2). PC-1 puede sufrir múltiples clivajes y los fragmentos generados intervienen en diferentes cascadas de señalización involucradas en mecanismos de proliferación y diferenciación celular. Uno de estos clivajes libera el extremo C-terminal citoplasmático de la PC-1. Se ha demostrado que los extremos C-terminal citoplasmático de PC-1 y PC-2 pueden interactuar tanto in vitro como in vivo. El propósito de esta revisión es resumir la literatura más reciente que sugiere que PC-1 y PC-2 pueden funcionar a través de una cascada de señalización común necesaria para la tubulogénesis normal. Creemos que una mejor comprensión de los mecanismos moleculares de acción de PC-1 y PC-2 contribuirán al progreso en el diagnóstico y tratamiento de ADPKD.


Subject(s)
Animals , Humans , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/metabolism , Apoptosis/physiology , Cell Proliferation , Calcium Channels/metabolism , Cell Nucleus/metabolism , Cyclic AMP/metabolism , Kidney Tubules/metabolism , Mutation , Polycystic Kidney, Autosomal Dominant/genetics
9.
Experimental & Molecular Medicine ; : e67-2013.
Article in English | WPRIM | ID: wpr-83998

ABSTRACT

Serotonin (5-hydroxytryptamine (5-HT)) is a neurotransmitter that regulates a variety of functions in the nervous, gastrointestinal and cardiovascular systems. Despite such importance, 5-HT signaling pathways are not entirely clear. We demonstrated previously that 4-aminopyridine (4-AP)-sensitive voltage-gated K+ (Kv) channels determine the resting membrane potential of arterial smooth muscle cells and that the Kv channels are inhibited by 5-HT, which depolarizes the membranes. Therefore, we hypothesized that 5-HT contracts arteries by inhibiting Kv channels. Here we studied 5-HT signaling and the detailed role of Kv currents in rat mesenteric arteries using patch-clamp and isometric tension measurements. Our data showed that inhibiting 4-AP-sensitive Kv channels contracted arterial rings, whereas inhibiting Ca2+-activated K+, inward rectifier K+ and ATP-sensitive K+ channels had little effect on arterial contraction, indicating a central role of Kv channels in the regulation of resting arterial tone. 5-HT-induced arterial contraction decreased significantly in the presence of high KCl or the voltage-gated Ca2+ channel (VGCC) inhibitor nifedipine, indicating that membrane depolarization and the consequent activation of VGCCs mediate the 5-HT-induced vasoconstriction. The effects of 5-HT on Kv currents and arterial contraction were markedly prevented by the 5-HT2A receptor antagonists ketanserin and spiperone. Consistently, alpha-methyl 5-HT, a 5-HT2 receptor agonist, mimicked the 5-HT action on Kv channels. Pretreatment with a Src tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, prevented both the 5-HT-mediated vasoconstriction and Kv current inhibition. Our data suggest that 4-AP-sensitive Kv channels are the primary regulator of the resting tone in rat mesenteric arteries. 5-HT constricts the arteries by inhibiting Kv channels via the 5-HT2A receptor and Src tyrosine kinase pathway.


Subject(s)
Animals , Male , Rats , 4-Aminopyridine/pharmacology , Action Potentials , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Cells, Cultured , Ketanserin/pharmacology , Mesenteric Arteries/drug effects , Muscle Contraction , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Nifedipine/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Spiperone/pharmacology , Vasoconstriction , src-Family Kinases/antagonists & inhibitors
10.
Biocell ; 36(2): 73-81, Aug. 2012. graf, tab
Article in English | LILACS | ID: lil-662144

ABSTRACT

After depletion of intracellular Ca2+ stores the capacitative response triggers an extracellular Ca2+ influx through store-operated channels (SOCs) which refills these stores. Our objective was to explore if human umbilical artery smooth muscle presented this response and if it was involved in the mechanism of serotonin- and histamine-induced contractions. Intracellular Ca2+ depletion by a Ca2+-free extracellular solution followed by Ca2+ readdition produced a contraction in artery rings which was inhibited by the blocker of Orai and TRPC channels 2-aminoethoxydiphenyl borate (2-APB), suggesting a capacitative response. In presence of 2-APB the magnitude of a second paired contraction by serotonin or histamine was significantly less than a first one, likely because 2-APB inhibited store refilling by capacitative Ca2+ entry. 2-APB inhibition of sarcoplasmic reticulum Ca2+ release was excluded because this blocker did not affect serotonin force development in a Ca2+-free solution. The PCR technique showed the presence of mRNAs for STIM proteins (1 and 2), for Orai proteins (1, 2 and 3) and for TRPC channels (subtypes 1, 3, 4 and 6) in the smooth muscle of the human umbilical artery. Hence, this artery presents a capacitative contractile response triggered by stimulation with physiological vasoconstrictors and expresses mRNAs for proteins and channels previously identified as SOCs.


Subject(s)
Humans , Boron Compounds/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , RNA, Messenger/genetics , Umbilical Arteries/drug effects , Vascular Capacitance/drug effects , Blotting, Western , Cells, Cultured , Calcium Channel Blockers/pharmacology , Calcium Channels/chemistry , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium/metabolism , Histamine Agonists/pharmacology , Histamine/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscle, Smooth/cytology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Serotonin Receptor Agonists/pharmacology , Serotonin/pharmacology , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Umbilical Arteries/cytology , Umbilical Arteries/metabolism
11.
Braz. j. med. biol. res ; 44(11): 1080-1087, Nov. 2011. ilus
Article in English | LILACS | ID: lil-604269

ABSTRACT

Highly efficient mechanisms regulate intracellular calcium (Ca2+) levels. The recent discovery of new components linking intracellular Ca2+ stores to plasma membrane Ca2+ entry channels has brought new insight into the understanding of Ca2+ homeostasis. Stromal interaction molecule 1 (STIM1) was identified as a Ca2+ sensor essential for Ca2+ store depletion-triggered Ca2+ influx. Orai1 was recognized as being an essential component for the Ca2+ release-activated Ca2+ (CRAC) channel. Together, these proteins participate in store-operated Ca2+ channel function. Defective regulation of intracellular Ca2+ is a hallmark of several diseases. In this review, we focus on Ca2+ regulation by the STIM1/Orai1 pathway and review evidence that implicates STIM1/Orai1 in several pathological conditions including cardiovascular and pulmonary diseases, among others.


Subject(s)
Humans , Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Cardiovascular Diseases/metabolism , Lung Diseases/metabolism
12.
Braz. j. med. biol. res ; 44(6): 562-572, June 2011. ilus, tab
Article in English | LILACS | ID: lil-589981

ABSTRACT

Inhibition of type-5 phosphodiesterase by sildenafil decreases capacitative Ca2+ entry mediated by transient receptor potential proteins (TRPs) in the pulmonary artery. These families of channels, especially the canonical TRP (TRPC) subfamily, may be involved in the development of bronchial hyperresponsiveness, a hallmark of asthma. In the present study, we evaluated i) the effects of sildenafil on tracheal rings of rats subjected to antigen challenge, ii) whether the extent of TRPC gene expression may be modified by antigen challenge, and iii) whether inhibition of type-5 phosphodiesterase (PDE5) may alter TRPC gene expression after antigen challenge. Sildenafil (0.1 µM to 0.6 mM) fully relaxed carbachol-induced contractions in isolated tracheal rings prepared from naive male Wistar rats (250-300 g) by activating the NO-cGMP-K+ channel pathway. Rats sensitized to antigen by intraperitoneal injections of ovalbumin were subjected to antigen challenge by ovalbumin inhalation, and their tracheal rings were used to study the effects of sildenafil, which more effectively inhibited contractions induced by either carbachol (10 µM) or extracellular Ca2+ restoration after thapsigargin (1 µM) treatment. Antigen challenge increased the expression of the TRPC1 and TRPC4 genes but not the expression of the TRPC5 and TRPC6 genes. Applied before the antigen challenge, sildenafil increased the gene expression, which was evaluated by RT-PCR, of TRPC1 and TRPC6, decreased TRPC5 expression, and was inert against TRPC4. Thus, we conclude that PDE5 inhibition is involved in the development of an airway hyperresponsive phenotype in rats after antigen challenge by altering TRPC gene expression.


Subject(s)
Animals , Male , Rats , Calcium Channels/drug effects , Carbachol/pharmacology , Piperazines/pharmacology , Sulfones/pharmacology , TRPC Cation Channels/drug effects , Trachea/drug effects , Vasodilator Agents/pharmacology , Calcium Channels/metabolism , Carbachol/antagonists & inhibitors , Gene Expression , Lactones/pharmacology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Nitric Oxide/metabolism , Ovalbumin/pharmacology , Purines/pharmacology , Rats, Wistar , Sesquiterpenes/pharmacology , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Trachea/metabolism , Trachea/physiopathology
13.
Experimental & Molecular Medicine ; : 614-627, 2010.
Article in English | WPRIM | ID: wpr-162255

ABSTRACT

During membrane depolarization associated with skeletal excitation-contraction (EC) coupling, dihydropyridine receptor [DHPR, a L-type Ca2+ channel in the transverse (t)-tubule membrane] undergoes conformational changes that are transmitted to ryanodine receptor 1 [RyR1, an internal Ca2+-release channel in the sarcoplasmic reticulum (SR) membrane] causing Ca2+ release from the SR. Canonical-type transient receptor potential cation channel 3 (TRPC3), an extracellular Ca2+-entry channel in the t-tubule and plasma membrane, is required for full-gain of skeletal EC coupling. To examine additional role(s) for TRPC3 in skeletal muscle other than mediation of EC coupling, in the present study, we created a stable myoblast line with reduced TRPC3 expression and without alpha1SDHPR (MDG/TRPC3 KD myoblast) by knock-down of TRPC3 in alpha1SDHPR-null muscular dysgenic (MDG) myoblasts using retrovirus-delivered small interference RNAs in order to eliminate any DHPR-associated EC coupling-related events. Unlike wild-type or alpha1SDHPR-null MDG myoblasts, MDG/TRPC3 KD myoblasts exhibited dramatic changes in cellular morphology (e.g., unusual expansion of both cell volume and the plasma membrane, and multi-nuclei) and failed to differentiate into myotubes possibly due to increased Ca2+ content in the SR. These results suggest that TRPC3 plays an important role in the maintenance of skeletal muscle myoblasts and myotubes.


Subject(s)
Animals , Mice , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels, L-Type/genetics , Cations/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Excitation Contraction Coupling , Gene Knockdown Techniques , Membrane Potentials , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/metabolism , Myoblasts, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/physiology , Synaptophysin/metabolism , TRPC Cation Channels/genetics , Transient Receptor Potential Channels/metabolism
14.
Biol. Res ; 42(1): 111-119, 2009. ilus, tab
Article in English | LILACS | ID: lil-519090

ABSTRACT

Endothelial cells are directly involved in many functions of the cardiovascular system by regulating blood flow and blood pressure through Ca2+ dependent exocitosis of vasoactive compounds. Using the Ca2+ indicator Fluo-3 and the patch-clamp technique, we show that bovine adrenal medulla capillary endothelial cells (B AMCECs) respond to acetylcholine (ACh) with a cytosolic Ca2+ increase and depolarization of the membrane potential (20.3±0.9 mV; n=23). The increase in cytosolic Ca2+ induced by 10µM ACh was mimicked by the same concentration of nicotine but not by muscarine and was blocked by 100 µM of hexamethonium. On the other hand, the increase in cytosolic Ca2+ could be depressed by nifedipine (0.01 -100 µM) or withdrawal of extracellular Ca2+. Taken together, these results give evidence for functional nicotinic receptors (nAChRs) in capillary endothelial cells of the adrenal medulla. It suggests that nAChRs in B AMCECs may be involved in the regulation of the adrenal gland's microcirculation by depolarizing the membrane potential, leading to the opening of voltage-activated Ca2+ channels, influx of external Ca2+ and liberation of vasoactive compounds.


Subject(s)
Animals , Cattle , Adrenal Medulla/drug effects , Calcium Channels/drug effects , Cytosol/drug effects , Endothelial Cells/drug effects , Nicotine/pharmacology , Receptors, Nicotinic/drug effects , Acetylcholine/pharmacology , Adrenal Medulla/blood supply , Adrenal Medulla/cytology , Calcium Channels/metabolism , Capillaries/cytology , Capillaries/drug effects , Cytosol/metabolism , Evoked Potentials/drug effects , Hexamethonium/pharmacology , Membrane Potentials/drug effects , Muscarine/pharmacology , Receptors, Nicotinic/metabolism
15.
Braz. j. med. biol. res ; 41(7): 615-620, July 2008. ilus, tab, graf
Article in English | LILACS | ID: lil-489520

ABSTRACT

Obesity is a complex multifactorial disorder that is often associated with cardiovascular diseases. Research on experimental models has suggested that cardiac dysfunction in obesity might be related to alterations in myocardial intracellular calcium (Ca2+) handling. However, information about the expression of Ca2+-related genes that lead to this abnormality is scarce. We evaluated the effects of obesity induced by a high-fat diet in the expression of Ca2+-related genes, focusing the L-type Ca2+ channel (Cacna1c), sarcolemmal Na+/Ca2+ exchanger (NCX), sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), ryanodine receptor (RyR2), and phospholamban (PLB) mRNA in rat myocardium. Male 30-day-old Wistar rats were fed a standard (control) or high-fat diet (obese) for 15 weeks. Obesity was defined as increased percent of body fat in carcass. The mRNA expression of Ca2+-related genes in the left ventricle was measured by RT-PCR. Compared with control rats, the obese rats had increased percent of body fat, area under the curve for glucose, and leptin and insulin plasma concentrations. Obesity also caused an increase in the levels of SERCA2a, RyR2 and PLB mRNA (P < 0.05) but did not modify the mRNA levels of Cacna1c and NCX. These findings show that obesity induced by high-fat diet causes cardiac upregulation of Ca2+ transport_related genes in the sarcoplasmic reticulum.


Subject(s)
Animals , Male , Rats , Calcium Channels/genetics , Calcium-Binding Proteins/genetics , Calcium-Transporting ATPases/genetics , Myocardium/metabolism , Obesity/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sodium-Calcium Exchanger/genetics , Calcium Channels/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Transporting ATPases/metabolism , Homeostasis , Myocardium/chemistry , Obesity/genetics , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger , Sarcolemma/chemistry , Sarcolemma/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism , Up-Regulation
16.
Indian J Exp Biol ; 2008 Jan; 46(1): 60-5
Article in English | IMSEAR | ID: sea-62718

ABSTRACT

Prokinetic drugs like mosapride, domperidone etc, are used to treat gastrointestinal delay. Though the receptor-mediated actions of these agents have been studied, involvement of ion channels in reversing morphine-induced gastrointestinal inertia by prokinetic agents has not been explored. Charcoal meal test was used to measure small intestinal transit (SIT) in adult male Swiss albino mice. Animals were given ion channel modifiers and prokinetic drugs intragastrically. Reversal of morphine-induced gastrointestinal delay by mosapride was decreased significantly by CaCl2, minoxidil and glibenclamide. Similarly, domperidone's effect on morphine was decreased by CaCl2, nifedipine, minoxidil and glibenclamide significantly. The results reveal that ion channel modifiers counteract the prokinetic effects of mosapride or domperidone.


Subject(s)
Analgesics, Opioid/pharmacology , Animals , Benzamides/pharmacology , Calcium Channels/metabolism , Domperidone/pharmacology , Gastrointestinal Tract/metabolism , Glyburide/pharmacology , Intestine, Small/drug effects , Ion Channels/metabolism , Kinetics , Mice , Minoxidil/pharmacology , Morphine/pharmacology , Morpholines/pharmacology , Nifedipine/pharmacology , Time Factors
17.
Biol. Res ; 41(2): 183-195, 2008. ilus, graf
Article in English | LILACS | ID: lil-495753

ABSTRACT

Neurons are a diverse cell type exhibiting hugely different morphologies and neurotransmitter specifications. Their distinctive phenotypes are established during differentiation from pluripotent precursor cells. The signalling pathways that specify the lineage down which neuronal precursor cells differentiate remain to be fully elucidated. Among the many signáis that impinge on the differentiation of neuronal cells, cytosolic calcium (Ca2+) has an important role. However, little is known about the nature of the Ca2+ signáis involved in fate choice in neuronal precursor cells, or their sources. In this study, we show that activation of either muscarinic or platelet-derived growth factor (PDGF) receptors induces a biphasic increase in cytosolic Ca2+ that consists of reléase from intracellular stores followed by sustained entry across the plasma membrane. For both agonists, the prolonged Ca2+ entry occurred via a store-operated pathway that was pharmacologically indistinguishable from Ca2+ entry initiated by thapsigargin. However, muscarinic receptor-activated Ca2+ entry was inhibited by siRNA-mediated knockdown of TRPC6, whereas Ca2+ entry evoked by PDGF was not. These data provide evidence for agonist-specific activation of molecularly distinct store-operated Ca2+ entry pathways, and raise the possibility of privileged communication between these Ca2+ entry pathways and downstream processes.


Subject(s)
Humans , Calcium Channels/drug effects , Methacholine Chloride/pharmacology , Muscarinic Agonists/pharmacology , Neurons/drug effects , Platelet-Derived Growth Factor/pharmacology , Cells, Cultured , Calcium Channels/metabolism , Calcium Signaling/drug effects , Immunoblotting , Neurons/cytology , Neurons/metabolism , Time Factors
19.
Article in English | IMSEAR | ID: sea-86609

ABSTRACT

Familial Hypomagnesemia, Hypercalciuria with Nephrocalcinosis is a rare autosomal recessive inherited disease associated with renal failure. Two girls born of consanguineous parentage aged 16 and 17 presented to us with renal failure, nephrocalcinosis and bone deformities. On evaluation they were found to have hypomagnesemia, hypercalciuria, increased fractional excretion of magnesium, hypocitraturia, renal failure and elevated PTH. Their parental screening was normal. There were no extra-renal features in them. One sibling had nephrolithiasis and the stone analysis revealed calcium phosphate stones. Both were treated with sodium bicarbonate, thiazides, calcitriol and calcium carbonate. They did not require dialysis during hospital stay. Both of them were treated conservatively. They are on regular outpatient follow up. The primary defect in this syndrome is impaired paracellular reabsorption of magnesium and calcium in the medullary thick ascending limb. Mutations in the PCLN-1gene which encodes for the tight junction protein paracellin -1 is identified as the underlying genetic defect. Ocular abnormalities and deafness are the commonly reported associations. End stage renal failure usually occurs in second to third decade. Renal transplantation is the definite treatment.


Subject(s)
Acid-Base Equilibrium , Adolescent , Calcium/urine , Calcium Channels/metabolism , Female , Humans , Magnesium Deficiency/diagnosis , Nephrocalcinosis/diagnosis , Siblings , Syndrome
20.
Braz. j. med. biol. res ; 39(3): 393-403, Mar. 2006. ilus
Article in English | LILACS | ID: lil-421372

ABSTRACT

The present review deals with Ca2+-independent, K+-carried transient outward current (Ito), an important determinant of the early repolarization phase of the myocardial action potential. The density of total Ito and of its fast and slow components (Ito,f and Ito,s, respectively), as well as the expression of their molecular correlates (pore-forming protein isoforms Kv4.3/4.2 and Kv1.4, respectively), vary during postnatal development and aging across species and regions of the heart. Changes in Ito may also occur in disease conditions, which may affect the profile of cardiac repolarization and vulnerability to arrhythmias, and also influence excitation-contraction coupling. Decreased Ito density, observed in immature and aging myocardium, as well as during several types of cardiomyopathy and heart failure, may be associated with action potential prolongation, which favors Ca2+ influx during membrane depolarization and limits voltage-dependent Ca2+ efflux via the Na+/Ca2+ exchanger. Both effects contribute to increasing sarcoplasmic reticulum (SR) Ca2+ content (the main source of contraction-activating Ca2+ in mammalian myocardium), which, in addition to the increased Ca2+ influx, should enhance the amount of Ca2+ released by the SR during systole. This change usually takes place under conditions in which SR function is depressed, and may be adaptive since it provides partial compensation for SR deficiency, although possibly at the cost of asynchronous SR Ca2+ release and greater propensity to triggered arrhythmias. Thus, Ito modulation appears to be an additional mechanism by which excitation-contraction coupling in myocardial cells is indirectly regulated.


Subject(s)
Animals , Humans , Action Potentials/physiology , Calcium/metabolism , Myocardium/metabolism , Potassium/metabolism , Sarcoplasmic Reticulum/metabolism , Calcium Channels/metabolism , Homeostasis/physiology , Potassium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL